القدرة اللازمة للطيران


القدرة اللازمة للطيران

القدرة اللازمة


يولد المحرك، القدرة اللازمة لطيران الطائرة. وتستخدم الطائرات ثلاثة أنواع رئيسية من المحركات:
1ـ محركات ترددية أو مكبسية
2ـ محركات نفاثة
3ـ محركات صاروخية.
والمحركات الترددية هي الأكثر وزنًا والأقل إنتاجًا للقدرة من بين هذه الأنواع، بينما المحركات الصاروخية هي الأكثر إنتاجًا للقدرة

مقارنة بين الطائرات ذات المحركات الترددية والطائرات النفاثة
المحركات الترددية أو المكبسية. وتستخدم أكثر من غيرها من أنواع محركات الطائرات. فمعظم الطائرات الصغيرة، وكثير من الطائرات الكبيرة مزودة بمحركات ترددية. ولهذه الطائرات مروحة أو أكثر. ويدير المحرك المروحة، لتتولد قوة لدفع الطائرة في الجو.

ويعمل المحرك المكبسي في الطائرة، بصورة تشبه عمله في السيارة. ففي كلتا الحالتين، يقوم المحرك بحرق خليط من البنزين والهواء داخل أسطوانات، مما يحدث انفجارا يؤدي إلى دفع المكابس للحركة داخل الأسطوانات إلى أعلى وإلى أسفل. وتدير هذه الحركة الدافعة، عمود المرفق، الذي يقوم بدفع مروحة الطائرة للدوران. وفي السيارة يقوم عمود المرفق بدفع أجزاء أخرى تؤدي في النهاية إلى دوران العجلات. إلا أن المحرك الترددي المستخدم في الطائرات، يختلف عن مثيله المستخدم في السيارات في كثير من النواحي. ففي معظم محركات الطائرات، ترتب الأسطوانات دائريًا أو في خطين متوازيين. أما في محركات السيارات، فإنها ترتب إما في خط مستقيم واحد، وإما على شكل 7. وتستخدم محركات الطائرات كذلك جهازًا يسمى المغنيط بدلاً من البطاريات لإحداث الشرارة. ويتم تبريد معظم محركات الطائرات بالهواء بدلا من الماء. انظر: البترول؛ المغنيط.

تقاس قدرة المحرك الترددية بوحدة الكيلوواط، وتتراوح قدرة معظم محركات الطائرات بين 22كيلوواط للطائرات الصغيرة ذات المحرك المفرد، ونحو 300 كيلوواط للطائرات الكبيرة ثنائية المحركات. وقد كان أكثر المحركات الترددية إنتاجًا للقدرة المستخدمة لدفع الطائرات، المحرك المثبت على الطائرة القاذفة الأمريكية العملاقة ب ـ 36، والذي كان يولد 2,722 كيلوواط، في أواخر الأربعينيات من القرن العشرين. ولم تعد الطائرات الكبيرة أو السريعة تستخدم مثل هذه المحركات الترددية ذات القدرة العالية. فمثل هذه القدرة اللازمة الطائرات أصبحت تدفع آليا بمحركات نفاثة أخف وزنًا من المحركات الترددية رغم أنها تولد قدرة أكثر منها كثيرًا. ومازالت المحركات الترددية تستخدم في معظم الطائرات الخفيفة حيث تعمل بصورة أفضل من المحركات النفاثة عند السرعات المنخفضة.القدرة اللازمة

المحركات النفاثة.

القدرة اللازمة
تُمكِّن المحركات النفاثة الطائرات الكبيرة من السفر مسافات طويلة بسرعات عالية. لكن المحركات النفاثة لابد لها أيضا من أن تعمل بصورة مرضية عند السرعات المنخفضة حتى تستخدم للدفع الآلي للطائرات من أجل سلامة هبوط الطائرة. وهناك ثلاثة أنواع للمحركات النفاثة، هي:
1ـ محرك توربيني نفاث
2ـ محرك توربيني مروحيالقدرة اللازمة
3ـ محرك مروحي توربيني.

والمحرك التوربيني النفاث هو أول محرك نفاث يحقق نجاحًا، ومازال يستخدم للآن في بعض الطائرات. ومثل المحركات النفاثة القدرة اللازمة الأخرى، يسحب المحرك التوربيني النفاث الهواء من أمامه، ويحرقه بعد خلطه بالوقود. ويتولد عن هذه العملية نفث قوي للعادم حيث تندفع غازات العادم من خلال المحرك إلى مؤخرته بسرعة فائقة، مما يتسبب في تحرك المحرك للأمام بسرعة عالية مساوية. انظر: الدفع النفاث. وقبل أن يترك العادم فوهة المحرك، يدير قرصًا للتوربين. فيدير التوربين أجزاء المحرك المختلفة. انظر: التوربين.

وتزود كل طائرات الخطوط الجوية الحديثة تقريبًا بمحركات توربينية مروحية، تماثل المحركات التوربينية النفاثة مع إجراء بعض التحسينات. والمحرك التوربيني المروحي يعمل في معظم الأحوال مثله مثل المحرك التوربيني النفاث، إلا أن له مروحة أمامية تسحب كمية كبيرة من الهواء. يتجه جزء فقط من هذا الهواء للاحتراق مع الوقود لتوليد نفث العادم، أما الهواء الباقي فينضم إلى غاز العادم عند خروجهما معا من فوهة المحرك. ويصبح بذلك العادم الناتج أكثر قدرة وأقل حرارة من عادم المحرك التوربيني النفاث.. ويستهلك المحرك التوربيني المروحي وقودا أقل مما يستهلكه المحرك التوربيني النفاث، ويصدر ضوضاء أقل، كما أنه يعمل بصورة أفضل عند السرعات البطيئة.

وتستخدم الطائرة المروحية التوربينية، محركًا توربينيًا نفاثًا لدفع المروحة الأمامية. وتجمع بذلك بين القدرة الفائقة للمحرك التوربيني النفاث وقدرة المراوح الأفضل على الطيران عند سرعات منخفضة.

وهناك أنواع أخرى من المحركات النفاثة، إلا أنها نادرًا ما تستخدم لدفع الطائرات. فالمحرك النفاث التضاغطي هو أبسط أنواع المحركات النفاثة وأكثرها إنتاجًا للقدرة. لكنه لا يعمل إلا عند السرعات العالية فقط. ويستخدم المحرك النفاث التضاغطي أساسًا في دفع القذائف الطائرة (وهي طائرات دون طيار)، وكذلك للأسلحة. أما المحرك النافوري النبضي فهو أيضًا محرك نفاث مبسط. إلا أنه يستهلك قدرًا كبيرًا من الوقود ويصدر ضوضاء شديدة، ولهذا فهو لا يصلح لدفع الطائرات. انظر: الدفع النفاث.

المحركات الصاروخية.

القدرة اللازمة
يعمل المحرك الصاروخي بصورة مشابهة لعمل المحرك النفاث، فيما عدا أنه ليس في حاجة للتزود بالأكسجين من الجو الخارجي، ويتحسن أداء المحرك الصاروخي عند السرعات العالية جدًا، إلا أنه يستهلك أيضًا قدرًا عاليًا من الوقود مما يرفع من تكلفة تشغيله. ويظل احتمال انفجار المحرك الصاروخي في أي لحظة سببًا في عدم استخدامه للدفع الآلي للطائرات التي تحمل ركابًا، نظرا لشدة خطورته.

وعلى الرغم من عيوبه، فإن المحرك الصاروخي يستخدم أحيانًا لدفع الطائرات. فهناك عدد قليل من الطائرات النفاثة أو المروحية التوربينية التي تستخدم محركات صاروخية صغيرة لمساعدتها على الإقلاع بسرعة عالية إذا كانت الحمولة كبيرة أو للإقلاع من ممر قصير. وتُثبت المحركات الصاروخية إما بجسم الطائرة أو أسفل أجنحتها. وقد استخدمت المحركات الصاروخية للدفع الآلي لكثير من طائرات الاختبار فوق الصوتية، مثل الطائرة بيل إكس ـ 1، والطائرة الأمريكية إكس ـ 15.

قانون برنولي
شرح قانون برنولي (Bernoulli) بأسلوب تطبيقي رائع جدا ومشوق. هذا القانون والذي ينص على أنه اذا زادت السرعة قل الضغط، يفسر لنا سبب رفرفة الاعلام وطيران الطائرات ومكانيكية عمل زجاجة العطر والكثير من الأمثلة مردها قانون برنولي.