انتقال الحرارة


انتقال الحرارة

حين يتماس جسمان مختلفان في درجة الحرارة يلاحظ أن الفرق بين درجتي الحرارة فيهما يتناقص مع مرور الزمن حتى ينعدم، فيقال إن الحرارة قد انتقلت من الجسم الأعلى حرارة إلى الجسم الأخفض حرارة. ويحدث مثل ذلك في الجسم الواحد إذا كان جزآن منه في درجتين من الحرارة مختلفتين فتنتقل الحرارة من الجزء الساخن إلى الجزء البارد.

 
ويعود تعبير انتقال الحرارة heat transfer أصلاً إلى الاعتقاد الذي كان سائداً حتى أواخر القرن الثامن عشر بأن الحرارة مائع مرن غير مرئي عديم الكتلة يملأ ما بين جزيئات المادة ويمكنه أن يسيل ويجري من نقطة إلى أخرى في مجموعة من الأجسام، وهو ما كانت تنص عليه نظرية السَيّال الحراري caloric theory وكان هناك، في الوقت نفسه، نظرية تنافسها تعزو الحرارة إلى اهتزاز جزيئات المادة اهتزازاً سريعاً، إلا أن هذه النظرية لم تلْق الدعم الكافي ولكنها فاقت النظرية الأولى في منتصف القرن التاسع عشر ولاقت قبولاً حسناً.

 
وكان قد أُجري في أواخر القرن الثامن عشر عددٌ كبير من التجارب للتحقق من طبيعة الحرارة وماهيتها، إلا أن هذه التجارب لم تؤد إلى نتائج مُرضية. وفي عام 1840 ابتدأ العالم جول[ر] Joule بإجراء تجارب لتوليد الحرارة من عمل ميكانيكي، وكان لهذه التجارب أهميتها الكبرى لتنوع الطرائق التي اتبعها جول لإثبات التكافؤ بين الحرارة والعمل الميكانيكي بدقة كبيرة تفوق ما كان ميسراً له من وسائل في تلك الأيام. وأثبت جول بتجاربه هذه أن الحرارة ليست إلا نوعاً من أنواع الطاقة هي طاقة حركة الجزيئات التي تتكون منها المادة.

 

 

انتقال الحرارة

طرائق انتقال الحرارة

هناك ثلاث طرائق لانتقال الحرارة من جسم إلى آخر أو في الجسم نفسه، هي التوصيل (النقل) conduction والحَمل convection والإشعاع radiation.
التوصيل: يتم انتقال الحرارة في طريقة التوصيل من أكثر الجزيئات طاقة إلى أقلها طاقةً؛ ففي الأجسام الصلبة الرديئة التوصيل الكهربائي (العوازل) يتم انتقال الحرارة بفضل قوى المرونة التي تربط بين الذرات التي تهتز حول أوضاع توازنها، فالأمر هنا يقتصر على انتقال الطاقة الاهتزازية عبر الشبكة البلورية للجسم الصلب بشكل كمات quanta تسمى فونونات[ر] phonons أما في الموائع (السوائل والغازات) فيتم انتقال الحرارة بفضل اصطدام أكثر الجزيئات طاقة حركية بأقلها طاقة. وفي الأجسام الصلبة الجيدة التوصيل الكهربائي (المعادن) يتم انتقال الحرارة بفضل عاملين هما: قوى المرونة التي أشير إليها في حالة الأجسام الرديئة التوصيل الكهربائي. والإلكترونات الحرة، وهي إلكترونات حرة الحركة في المعادن وتسلك سلوك الجزيئات في الغازات وتنتشر خلال المعدن من المنطقة الأكثر حرارة إلى أقلها حرارة ناقلة الطاقة باصطدامها في المنطقة الباردة بعضها ببعض وبإيونات شوارد الشبكة البلورية.
الحمل: يتم انتقال الحرارة في طريقة الحمل نتيجة اختلاف الكتلة الحجمية للمائع من منطقة إلى أخرى بسبب اختلاف درجة الحرارة، إذ إن ازدياد درجة الحرارة يرافقه نقصان في الكتلة الحجمية لمعظم الموائع (السوائل والغازات)؛ فإذا زُوِّد المائع بالحرارة من الأسفل ارتفع المائع الأقل كثافة وحل محله الأكبر كثافة وحدثت تيارات الحمل ناقلة الطاقة الحرارية. ويوصف الحمل حينئذ بأنه طبيعي، ومثال ذلك جريان الرياح في جو الأرض وجريان الماء في جهاز تدفئة مائية في المباني، وتيارات المحيطات التي يتعدل مجراها بحركة الأرض وبتضاريسها. وإذا استعملت مروحة أو مضخة لتوليد تيارات الحمل والمحافظة عليها كما هي الحال في التدفئة المركزية عادة قيل حينئذ إن انتقال الحرارة يتم بالحمل القسري.

 
الإشعاع: يختلف انتقال الحرارة بالإشعاع عن الطريقتين السابقتين بأنه يتم في الخلاء بين أجسام بعيد جداً بعضها عن بعض من دون حاجة إلى وسط ناقل وبسرعة هي سرعة الضوء (إشعاع الشمس مثلاً)، كما يختلف عنهما في أن الإشعاع يخترق بعض الأجسام المادية من دون أن تمتصه كلّه (اختراق الإشعاع الشمسي للجو الأرضي مثلاً). كذلك فإن انتقال الحرارة بالإشعاع يختلف عن طريقتي التوصيل والحمل السابقتين من حيث آليته mechanism، فكل جسم، مهما تكن درجة حرارته، يصدر إشعاعاً كهرمغنطيسياً معقداً بفضل الطاقة الحرارية لجزيئاته، ويمكنه، في الوقت نفسه، إذا سقط عليه إشعاع حراري من أجسام أخرى، أن يمتص قسماً من طاقة هذا الإشعاع فتزداد طاقته الحرارية، أما ما لم يمتصه الجسم فينعكس عنه إذا كان غير شفاف أو ينفذ منه إذا كان شفافاً.
الدراسة النظرية للتوصيل الحراري

 
تختلف المواد بجودة توصيلها الحراري عندما يُجعل أحد أجزائها في درجة حرارة مختلفة عن بقية الأجزاء. وقد بدأ العالم بيو J.Biot في أوائل القرن التاسع عشر بإجراء تجارب لدراسة انتقال الحرارة في أجسام صلبة بشكل بلاطة افترض ثخنها L وجَعل درجتيْ الحرارة عند وجهيها المتقابلين ثابتتين (T1 ، T2)، وعزل الأوجه الأخرى، فوجد أن كمية الحرارة التي تعبرُ واحدة المساحة في واحدة الزمن (أي كثافة التدفق الحراري) تتناسب طرداً مع الفرق بين درجتي الحرارة وعكساً مع L أي:

 
وسُمِّي عامل التناسب K التوصيلية (الناقلية) الحرارية thermal conductivity. ثم قام العالم فورييه[ر] J.Fourier عام 1816 بالصياغة الرياضية الدقيقة بغية الوصول إلى تعريف دقيق للتوصيلية الحرارية K، فأخذ في الحسبان الحرارة الضائعة عن طريق الأوجه الأخرى بإدخال مفهوم التدرج الحراري
حيث يمثل dx البعد بين سطحين متساوييْ الدرجة متجاورين يختلفان بمقدار dT في درجة الحرارة وصاغ القانون بدقة على النحو التالي:

 
حيث يمثل الطرف الأول من هذه العلاقة كمية الحرارة المنتقلة عبر السطح dA في المدة الزمنية dt. وتشير إشارة الناقص إلى أن التدفق الحراري يتم في اتجاه معاكس لاتجاه تزايد درجة الحرارة.

 
إن قياس التوصيلية الحرارية للسوائل يستدعي احتياطات ينبغي اتخاذها لاجتناب حدوث تيارات الحمل، فمثلاً ينبغي تسخين السائل من الأعلى حتى تكون الطريقةُ الوحيدة لانتقال الحرارة إلى أسفل السائل هي طريقة تبادل الطاقة بين الجزيئات. وليس هناك معادلة بسيطة تعطي التوصيلية الحرارية K للسوائل، وسبب ذلك هو أن الحرارة التي يفقدها سطح ذو درجة حرارة محدودة، إذا كان مماساً لسائل موجود في درجة حرارة أخرى، تتعلق بأشياء كثيرة منها الشكل الهندسي للسطح ووضعه وكذلك كثافة السائل ولزوجته وحرارته النوعية.

 
أما قياس التوصيلية الحرارية للغازات فهو أشد صعوبة من حالة السائل، إذ يحدث في الغازات، إضافة إلى تيارات الحمل، انتقالُ الحرارة بالإشعاع خلال الغازات. ويبين الجدول (1) قيم التوصيلية الحرارية لبعض الأجسام الصلبة والمائعة في درجات الحرارة العادية، وتتغير هذه القيم بتغير درجة الحرارة وخاصة في درجات الحرارة المنخفضة.